An Evolutionary Random Search Algorithm for Solving Markov Decision Processes
نویسندگان
چکیده
heterogeneous and dynamic problems of engineering technology and systems for industry and government. ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technology/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center. Web site http://www.isr.umd.edu I R INSTITUTE FOR SYSTEMS RESEARCH TECHNICAL RESEARCH REPORT
منابع مشابه
An Evolutionary Random Policy Search Algorithm for Solving Markov Decision Processes
T paper presents a new randomized search method called evolutionary random policy search (ERPS) for solving infinite-horizon discounted-cost Markov-decision-process (MDP) problems. The algorithm is particularly targeted at problems with large or uncountable action spaces. ERPS approaches a given MDP by iteratively dividing it into a sequence of smaller, random, sub-MDP problems based on informa...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملUsing composite ranking to select the most appropriate Multi-Criteria Decision Making (MCDM) method in the optimal operation of the Dam reservoir
In this study, the performance of the algorithms of whale, Differential evolutionary, crow search, and Gray Wolf optimization were evaluated to operate the Golestan Dam reservoir with the objective function of meeting downstream water needs. Also, after defining the objective function and its constraints, the convergence degree of the algorithms was compared with each other and with the absolut...
متن کاملAn Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set
Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...
متن کاملSymbolic LAO* Search for Factored Markov Decision Processes
We describe a planning algorithm that integrates two approaches to solving Markov decision processes with large state spaces. It uses state abstraction to avoid evaluating states individually. And it uses forward search from a start state, guided by an admissible heuristic, to avoid evaluating all states. These approaches are combined in a novel way that exploits symbolic model-checking techniq...
متن کامل